Expansionary-contradictory Policies in Stock Companies Using Left and Right Returns to Scales in Data Envelopment Analysis Models

نویسندگان

  • Payan, A. Assistant Professor, Department of Mathematics, Zahedan Branch, Islamic Azad University, Zahedan, Iran
  • Rahmani Perchikolaei, B. Assistant Professor, Department of Mathematics, Tehran Central Branch, Islamic Azad University, Tehran, Iran
چکیده مقاله:

The purpose of this paper is to evaluate the returns to scale of the Tehran Stock Exchange based on new models in data envelopment analysis. Using this assessment, it is possible to judge the application of contradictory or expansion policies in stock companies. To this end, there is a need for models in the data envelopment analysis that can assess the left and right returns to scales of the decision making units. In this paper, two linear programming models were presented for assessing performance and left and right returns to scales in data envelopment analysis. The main advantage of the method is the linearity of both models, while the previous models were infeasible, non-linear or parametric to determine left and right returns to scales. Also, analysis the left returns to scale can be done by solving a linear programming problem (LP), and right returns to scale can be analyzed with another LP. The results of determining left and right returns to scales of Tehran Stock Exchange companies in 1395 show that the models are easily applicable to analyze the contraction and expansion policies in stock companies.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network Data Envelopment Analysis: Application to Gas Companies in Iran

Energy, due to its increasing usage in various broad areas has been maintained as a vital factor in economic growth and development of societies. Meanwhile, natural gas is considered as one of the most important energy sources. Therefore, the efficiency and the productivity of the gas companies are crucial to be assessed. Numerous examples from industrial multistage processes including internal...

متن کامل

Creating Full Envelopment in Data Envelopment Analysis with Variable Returns to Scale Technology

In this paper, weak defining hyperplanes and the anchor points in DEA, as an important subset of the set of extreme efficient points of the Production Possibility Set (PPS), are used to construct unobserved DMUs and in the long run to improve the envelopment of all observed DMUs. There has been a surge of articles on improving envelopment in recent years. What has been done first is in Constant...

متن کامل

Estimating Returns to Scale in the Presence of Undesirable Factors in Data Envelopment Analysis

This research identifies returns to scale (RTS) of efficient decision making units (DMUs) with desirable (good) and undesirable (bad) inputs and outputs by presenting a new DEA (data envelopment analysis) approach. In this study, we first introduce a new input-output oriented model to determine efficient DMUs in the presence of undesirable factors and then, returns to scale of these DMUs are es...

متن کامل

Window Network Data Envelopment Analysis: An Application to Investment Companies

In this study, the window network data envelopment analysis (WNDEA) model will be proposed, that is capable to be used in the presence of panel data. Additionally, the proposed model is applied to evaluate the dynamic efficiency of 5 investment companies in Tehran stock exchange during the period from 2013 to 2017.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 17  شماره 1

صفحات  119- 137

تاریخ انتشار 2020-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023